Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The ternary complex 4-(2-pyridyl)-pyridinium-3,5-dinitrobenzoate-3,5-dinitrobenzoic acid (1/1/1)

Suchada Chantrapromma, ${ }^{a} \dagger$ Anwar Usman, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a }}{ }^{*}$ Bo-Long Poh ${ }^{\text {b }}$ and Chatchanok Karalai ${ }^{\text {c }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ School of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my

Received 10 June 2002
Accepted 19 July 2002
Online 31 August 2002
In the title ternary complex, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-}$.$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}$, the pyridinium cation adopts the role of the donor in an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interaction with the carboxylate group of the 3,5 -dinitrobenzoate anion. The molecules of the ternary complex form molecular ribbons perpendicular to the b direction, which are stabilized by one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and five $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds. The ribbons are further interconnected by three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a threedimensional network.

Comment

In the crystals of adducts of carboxylic acids with organic amine bases, there is complete or occasionally only partial transfer of H atoms from the acid to the base (Burchell et al., 2001). In our previous study of such bases, the trigonally substituted 3,5 -dinitrobenzoic acid, $\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COOH}$, readily formed the anion $\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COO}^{-}$and therefore can act as a multiple acceptor of hydrogen bonds (Chantrapromma et al., 2002). Our ongoing studies of 3,5 -dinitrobenzoic acid complexes with amine bases led to the title adduct, (I), in which $2,4^{\prime}$-bipyridine was selected as the amine base. The crystal structure, hydrogen bonds and weak interactions are reported here for (I) from data collected at 153 K .

3,5-Dinitrobenzoic acid forms a $2: 1$ salt with $2,4^{\prime}$-bipyridine, in which one of the acid molecules transfers an H atom to the bipyridine, making a ternary complex involving a 3,5 -dinitrobenzoate anion, a 4-(2-pyridyl)pyridinium cation and a neutral 3,5-dinitrobenzoic acid molecule (Fig. 1).

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The values within the 3,5 -dinitrobenzoate anion and neutral 3,5 -dinitrobenzoic acid molecule agree with

[^0]each other, except for those of the carboxylate group; O1C 17 is shorter than $\mathrm{O} 7-\mathrm{C} 24$, whereas $\mathrm{O} 2-\mathrm{C} 17$ is longer than $\mathrm{O} 8-\mathrm{C} 24$ (Table 1). This is due to the H -atom transfer process.

The benzoate anion and benzoic acid molecule are nearly planar. For the benzoate anion, the two O atoms of the nitro groups are slightly displaced from the aromatic ring, so that the $\mathrm{O} 3 / \mathrm{O} 4 / \mathrm{N} 4 / \mathrm{C} 15$ and $\mathrm{O} / \mathrm{O} 6 / \mathrm{N} 3 / \mathrm{C} 13$ planes are twisted around the $\mathrm{N}-\mathrm{C}$ bonds by angles of 8.3 (1) and $4.8(1)^{\circ}$, respectively. Similarly, the O9/O10/N6/C22 and O11/O12/N5/ C20 planes are twisted by 8.3 (1) and 3.5 (1) ${ }^{\circ}$, respectively, from the plane of the benzoic acid aromatic ring. Though the dihedral angle of the neutral carboxylic acid group (O7/O8/ C24/C18) with respect to its attached aromatic ring is $6.9(1)^{\circ}$, that of the carboxylate group (O1/O2/C17/C11) with respect to its attached aromatic ring is $22.7(1)^{\circ}$. This implies that the H -atom transfer process leads to geometric changes in the carboxylate anion, but does not produce any significant changes in the pyridinium cation, since the $\mathrm{C}-\mathrm{N}$ bonds within both the charged and uncharged heterocyclic rings are almost the same. This is due to the bond-length constraints within the aromatic rings.

Within the asymmetric unit of (I), both the benzoate anion and benzoic acid molecule are interconnected by an intermolecular $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 9$ interaction (Table 2). The pyridinium cation is nearly planar; the dihedral angle between the two aromatic rings is $2.0(1)^{\circ}$. In the packing, this cation is connected to the benzoate anion and benzoic acid molecule by one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and six $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, while the benzoate anion and benzoic acid molecule are linked by one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (see Table 2). The $\mathrm{N} 2-\mathrm{H} 111 \cdots \mathrm{O} 1$ and $\mathrm{O} 7-\mathrm{H} 117 \cdots \mathrm{O} 1$ hydrogen bonds, together with the five $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $(\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 5$,

Figure 1
The structure of the title ternary complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of the title ternary complex, showing the molecular ribbons perpendicular to the b direction.
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 12, \quad \mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 8, \quad \mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 2$ and $\mathrm{C} 12-$ H12 . .O7) interconnect the molecules into molecular ribbons perpendicular to the b direction (Fig. 2). There are three other hydrogen bonds ($\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 10, \mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4$ and $\mathrm{C} 14-$ H14...O9), which interconnect the ribbons into a threedimensional molecular arrangement.

Experimental

3,5-Dinitrobenzoic acid ($1.06 \mathrm{~g}, 5 \mathrm{mmol}$) and 2,4'-bipyridine (0.39 g , 2.5 mmol) were mixed thoroughly and dissolved in acetone (40 ml), after which, water $(2 \mathrm{ml})$ was added. The resulting mixture was stirred and warmed for 15 min . The clear light-yellow solution obtained was filtered and left to evaporate slowly in air. Single crystals of (I) suitable for X-ray diffraction studies were obtained after a few days.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=580.43$
Monoclinic, $P 2_{1} / c$
$a=9.0193$ (1) A
$b=20.6107(2) \AA$
$c=13.6609(3) \AA$
$\beta=104.372(1)^{\circ}$
$V=2460.01(7) \AA^{3}$
$Z=4$

Data collection

Siemens SMART CCD areadetector diffractometer

ω scans

Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.950, T_{\text {max }}=0.962$
14651 measured reflections

$$
\begin{aligned}
& D_{x}=1.567 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5786 \\
& \quad \text { reflections } \\
& \theta=2.5-28.3^{\circ} \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.40 \times 0.40 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

> 5931 independent reflections
> 4473 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.088$
> $\theta_{\max }=28.3^{\circ}$
> $h=-11 \rightarrow 12$
> $k=-27 \rightarrow 19$
> $l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.144$
$S=0.98$
5931 reflections
444 parameters
All H -atom parameters refined

Table 1
Selected interatomic distances (\AA).

$\mathrm{O} 1-\mathrm{C} 17$	$1.2896(18)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.334(2)$
$\mathrm{O} 2-\mathrm{C} 17$	$1.2361(18)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.3539(19)$
$\mathrm{O} 3-\mathrm{N} 4$	$1.2235(18)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.341(2)$
$\mathrm{O} 4-\mathrm{N} 4$	$1.2262(18)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.345(2)$

Table 2
Hydrogen-bonding geometry and close contacts $\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 111 \cdots \mathrm{O}^{\mathrm{i}}$	$0.91(2)$	$1.76(2)$	$2.671(2)$	$177(2)$
$\mathrm{O} 7-\mathrm{H} 117 \cdots \mathrm{O} 1^{\text {ii }}$	$1.01(3)$	$1.59(3)$	$2.579(2)$	$164(3)$
$\mathrm{C} 1-\mathrm{H} 1 \cdots 5^{\text {iii }}$	$1.00(2)$	$2.55(2)$	$3.360(2)$	$138(2)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	$0.92(2)$	$2.47(2)$	$3.176(2)$	$134(2)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.98(2)$	$2.58(2)$	$3.399(2)$	$142(2)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{v}$	$0.99(2)$	$2.39(2)$	$3.272(2)$	$148(2)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\text {vi }}$	$0.97(2)$	$2.40(2)$	$3.311(2)$	$155(2)$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{i}}$	$0.92(2)$	$2.52(2)$	$3.211(2)$	$132(2)$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 7^{\text {vii }}$	$0.94(2)$	$2.44(2)$	$3.087(2)$	$126(2)$
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 9$	$0.92(2)$	$2.43(2)$	$3.269(2)$	$152(2)$

Symmetry codes: (i) $-x, 1-y, 2-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $1-x, 1-y, 1-z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vi) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

All H atoms were located from difference Fourier maps and were refined isotropically; $\mathrm{C}-\mathrm{H}$ distances were in the range 0.91 (2)1.00 (2) Å.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610961, and AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1113). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Burchell, C. J., Glidewell, C., Lough, A. J. \& Ferguson, G. (2001). Acta Cryst. B57, 201-212.
Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B.-L. \& Karalai, C. (2002). In preparation.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

[^0]: \dagger Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

